

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International A Level in Further Pure Mathematics 3 (WFM03/01)

ALWAYS LEARNING

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA041579 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where pq = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required..

Question Number	Scheme	Notes	Marks
1.	$1 + 2\sinh^2 x - 7\sinh x = 5$	Replaces $\cosh 2x$ by $1 + 2 \sinh^2 x$ or replaces $\cosh 2x$ with $\cosh^2 x + \sinh^2 x$ and then $\cosh^2 x$ with $1 + \sinh^2 x$. There must be no incorrect identities used.	M1
	$2\sinh^2 x - 7\sinh x - 4 = 0$	Correct quadratic	A1
	$(2\sinh x+1)(\sinh x-4)=0 \Longrightarrow \sinh x=$	Attempt to solve 3TQ in sinhx (usual rules)	M1
	$\sinh x = -\frac{1}{2}, 4$	Both (allow un-simplified e.g. $\frac{7\pm9}{4}$)	A1
	$\operatorname{arsinh} x = \ln\left(x + \sqrt{x^2 + 1}\right)$	Use of the correct log form of arsinh	M 1
		e exponential form of sinhx and attempting e x in terms of ln	
	$x = \ln\left(-\frac{1}{2} + \sqrt{\frac{5}{4}}\right), \ \ln\left(4 + \sqrt{17}\right)$	A1: One correct exact value of <i>x</i> . Allow equivalent exact answers which may be un-simplified. A1: Both values correct and exact and no incorrect values. Allow equivalent exact	A1, A1
	answers which may be un-simplified. Condone missing brackets.		
	Correct work giving $x = \ln\left(-\frac{1}{2}\pm\sqrt{\frac{5}{4}}\right)$, $\ln\left(4\pm\sqrt{17}\right)$ would generally lose the final mark		
			(7)
	Alternative:		Total 7
	$\left(\frac{e^{2x} + e^{-2x}}{2}\right) - 7\left(\frac{e^{x} - e^{-x}}{2}\right) = 5$	M1: Substitutes the correct exponential definitions for cosh2x and sinhx A1: Correct expression	M1A1
	$e^{4x} - 7e^{3x} - 10e^{2x} - 7e^{x} + 1 = 0$	M1: Multiplies by e^{2x} A1: Correct quartic in e^x	M1A1
	$\left(e^{2x} + e^{x} - 1\right)\left(e^{2x} - 8e^{x} - 1\right) = 0 \Longrightarrow e^{x} = \dots$ $\Longrightarrow x = \dots$	Solves their quartic as far as $e^x =$ and then converts to give x in terms of ln. There must be a recognisable attempt to solve a quartic with at least 4 terms as e.g. the product of two 3TQ's in e^x .	M1
	$x = \ln\left(-\frac{1}{2} + \sqrt{\frac{5}{4}}\right), \ \ln\left(4 + \sqrt{17}\right)$	 A1: One correct exact value of <i>x</i>. Allow equivalent exact answers which may be un-simplified. A1: Both values correct and exact and no incorrect values. Allow equivalent exact answers which may be unsimplified. 	A1, A1

Phy	sicsAr	ndMath	sTutor	com
1 119	SIUSAI	univiati	31 4101	.com

Orrestian	F TIYSICSATIUMALITS T ULOT.COTT			
Question Number	Scheme	Notes	Marks	
2.	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$			
(a)	$\frac{12^2}{a^2} - \frac{5^2}{b^2} = 1 \text{ and } b^2 = a^2 \left(\left(\frac{\sqrt{21}}{4} \right)^2 - 1 \right)$	Substitutes the given point into the hyperbola with the 12 and 5 correctly positioned and substitutes the given value of e into the correct eccentricity equation.	M1	
	$b^{2} = \frac{5}{16}a^{2} \Rightarrow \frac{144}{a^{2}} - \frac{80}{a^{2}} = 1 \Rightarrow a \text{ or } a^{2} = \dots$ or $\frac{45}{b^{2}} - \frac{25}{b^{2}} = 0 \Rightarrow b \text{ or } b^{2} = \dots$	Solves simultaneously to obtain a value for <i>a</i> or a^2 or <i>b</i> or b^2	M1	
	$a = 8, \ b = \sqrt{20}$	Allow equivalents for $\sqrt{20}$ e.g. $2\sqrt{5}$ or awrt 4.47. Do not allow ± in either case	A1, A1	
			(4)	
(b)	$(\pm ae, 0) = (\pm 2\sqrt{21}, 0)$	Both (follow through their <i>a</i>). Must be coordinates.	B1ft	
			(1)	
			Total 5	
	Alternati	ve to (a):		
	$12 = a \sec \theta$ $5 = b \tan \theta$ and $b^2 = a^2 \left(\left(\frac{\sqrt{21}}{4} \right)^2 - 1 \right)$ $\frac{b}{a} = \frac{\sqrt{5}}{4}, \frac{b}{a} = \frac{5}{12} \operatorname{cosec} \theta \Rightarrow \operatorname{cosec} \theta = \frac{5}{3\sqrt{5}}$ $\operatorname{cosec} \theta = \frac{5}{3\sqrt{5}} \Rightarrow a = \dots \text{ or } b = \dots$	Substitutes the given value of e into the correct eccentricity equation and substitutes the given point into the	M1	
	$\csc \theta = \frac{5}{3\sqrt{5}} \Longrightarrow a = \dots$ or $b = \dots$	Solves to obtain a value for <i>a</i> or <i>b</i>	M1	
	$a=8, b=\sqrt{20}$	Allow equivalents for $\sqrt{20}$ e.g. $2\sqrt{5}$ or awrt 4.47. Do not allow ± in either case	A1, A1	

Multiplies by M to obtain a vector in terms of p, q and rMultiplies by M to obtain a vector in terms of p, q and r	A1A1 (4) M1 A1
method (allow sign errors only)A1: Correct equation in any formNB $\lambda^3 - \lambda^2 - 22\lambda + 40 = 0$ A1: $\lambda = 2$ or $\lambda = -5$ A1: $\lambda = 2$ and $\lambda = -5$ Multiplies by M to obtain a vector in	(4)
method (allow sign errors only)A1: Correct equation in any formNB $\lambda^3 - \lambda^2 - 22\lambda + 40 = 0$ A1: $\lambda = 2$ or $\lambda = -5$	
method (allow sign errors only)A1: Correct equation in any formNB $\lambda^3 - \lambda^2 - 22\lambda + 40 = 0$ A1: $\lambda = 2$ or $\lambda = -5$	- A1A1
method (allow sign errors only)A1: Correct equation in any formNB $\lambda^3 - \lambda^2 - 22\lambda + 40 = 0$	
method (allow sign errors only)A1: Correct equation in any form	
method (allow sign errors only)	
	M1A1
0 M1: Correct characteristic equation	
A1*: Correct <i>k</i>	(2)
an equation for k	M1A1*
	(2)
Correct eigenvalue	A1
Correct statement	M1
	Correct eigenvalue M1: Uses y component to establish

Question	Scheme	Notes	Marks
4(a)	$\int \cosh^n x \mathrm{d}x = \int \cosh x \cosh^{n-1} x \mathrm{d}x$	Writes $\cosh^n x$ as $\cosh x \cosh^{n-1} x$	B1
	$\int \cosh x \cosh^{n-1} x dx = \sinh x \cosh^{n-1} x - \int (n-1) \cosh^{n-2} x \sinh^2 x dx$ M1: Parts in the correct direction (if the method is unclear or formula not quoted only allow sign errors) A1: Correct expression		
	$= \sinh x \cosh^{n-1} x - (n-1) \int \cosh^{n-2} x (\cosh^2 x - 1) dx$ Writes $\sinh^2 x$ as $\cosh^2 x - 1$		dM1
	$= \sinh x \cosh^{n-1} x - (n-1) \int \cosh^{n} x dx + (n-1) \int \cosh^{n-2} x dx$		
	$= \sinh x \cosh^{n-1} x - (n-1) \mathbf{I}_n + (n-1) \mathbf{I}_{n-2}$	Substitutes for <i>I_n</i> and <i>I_{n-2}</i>	ddM1
	$(1+n-1)I_n = \sinh x \cosh^{n-1} x + (n-1)I_{n-2}$		
	$nI_n = \sinh x \cosh^{n-1} x + (n-1)I_{n-2} *$	Correct answer with at least one intermediate line of working and no errors seen	A1*
	Condone omission of "dx" and the occa final answer must	e	(6)
(b)	$I_{5} = \frac{1}{5} \left[\sinh x \cosh^{4} x \right]_{0}^{\ln 2} + \frac{4}{5} I_{3} \text{ or } I_{3} = \frac{1}{3} \left[\sinh x \cosh^{2} x \right]_{0}^{\ln 2} + \frac{2}{3} I_{1}$		
	One application of reduction formula (I_5 in terms of I_3 or I_3 in terms of I_1) $I_5 = \frac{1}{5} \left[\sinh x \cosh^4 x \right]_0^{\ln 2} + \frac{4}{5} I_3 \text{ and } I_3 = \frac{1}{3} \left[\sinh x \cosh^2 x \right]_0^{\ln 2} + \frac{2}{3} I_1$ Second application of reduction formula (I_5 in terms of I_3 and I_3 in terms of I_1)		
		$I_1 = \frac{3}{4}$	B1
	$=\frac{1}{5}\cdot\frac{3}{4}\cdot\left(\frac{5}{4}\right)^{4}+\frac{4}{5}\left(\frac{1}{3}\cdot\frac{3}{4}\cdot\left(\frac{5}{4}\right)^{2}+\frac{2}{3}\cdot\frac{3}{4}\right)$		
	$\int_0^{\ln 2} \cosh^5 x \mathrm{d}x = \frac{5523}{5120}$	Must be exact	A1
	$NB I_5 = \frac{1}{5} \sinh x \cosh^4 x + \frac{4}{15} \sinh x \cosh^4 x$	$1^2 x + \frac{8}{15} I_1$ could score M1M1B0A0	
			(4) Total 10
(a) Way 2	$\int \cosh^n x dx = \int \cosh^2 x \cosh^{n-2} x dx$ Writes $\cosh^n x = (1 + 1)$		B1
	Writes $\cosh^{n}x = (1 + \int \sinh x \sinh x \cosh^{n-2} x dx = \frac{1}{n-1} \sin^{n-1}$ M1: Parts in the correct direction (if the m	th $x \cosh^{n-1} x - \frac{1}{n-1} \int \cosh^n x dx$ ethod is unclear or formula not quoted	M1A1
	$\int \cosh^{n} x dx = \int \cosh^{n-2} x dx + \frac{1}{n-1} \sin^{n-2} x dx$	$\operatorname{nh} x \cosh^{n-1} x - \frac{1}{n-1} \int \cosh^n x \mathrm{d}x$	dM1
	Adds I_{n-2} to their interval $I_n = I_{n-2} + \frac{1}{n-1} \sinh x \cosh^{n-1} x - \frac{1}{n-1} I_n$ $(n-1)I_n = (n-1)I_{n-2} + \sinh x \cosh^{n-1} x - I_n$	Substitutes for <i>I_n</i> and <i>I_{n-2}</i>	ddM1
	$(n-1)I_n = (n-1)I_{n-2} + \sinh x \cosh^{n-1} x - I_n$ $nI_n = \sinh x \cosh^{n-1} x + (n-1)I_{n-2} *$	Correct answer with at least one intermediate line of working and no errors seen	A1*

Question Number	Scheme	Notes	Marks
5(a)	$\frac{x^2}{25} + \frac{(mx+c)^2}{9} = 1$	Uses <i>E</i> and <i>L</i> to obtain an equation in one variable	M1
-	$9x^2 + 25(m^2x^2 + 2cmx + c^2) = 225$		
-	$\left(25m^2+9\right)x^2+50cmx+25c^2-225=0$	Correct quadratic with terms collected	A1
-	$b^{2} = 4ac \Rightarrow (50cm)^{2} = 4(25m^{2} + 9)(25c^{2} - 225)$	Use of $b^2 = 4ac$	M1
-	$2500c^2m^2 = 4(625c^2m^2 - 5625m^2 + 225c^2 - 2025)$		
	$225c^2 - 5625m^2 = 2025$		
	$c^2 - 25m^2 = 9*$	Achieves printed answer with no errors	A1*
	Use of the unproved general case $a^2m^2 + l$	$b^2 = c^2$ scores no marks	
			(4)
	See end of scheme for alter		
(b)	$(1 - 2)^2 - 2 - 2$	Uses the point (3, 4) and solves	
	$c = 4 - 3m \Longrightarrow \left(4 - 3m\right)^2 - 25m^2 = 9$	simultaneously to obtain an	M1
-	2	equation in one variable	
	$16m^2 + 24m - 7 = 0$		
	(1, 1)(1, 7) = 0 1 7	M1: Solves their quadratic to	
	$(4m-1)(4m+7) = 0 \Longrightarrow m = \frac{1}{4}, -\frac{7}{4}$	obtain 2 values for <i>m</i>	M1A1
-	· ·	A1: Correct values	
	$m = \frac{1}{4} \Rightarrow c = \frac{13}{4}, \ m = -\frac{7}{4} \Rightarrow c = \frac{37}{4}$	Finds at least one value for <i>c</i>	M1
	$m = \frac{1}{4} \Rightarrow c = \frac{13}{4}, m = -\frac{7}{4} \Rightarrow c = \frac{37}{4}$ $y = \frac{1}{4}x + \frac{13}{4}, y = -\frac{7}{4}x + \frac{37}{4}$	Correct equations	A1
			(5)
(b) Way 2	$m = \frac{4-c}{3} \Longrightarrow c^2 - 25\left(\frac{4-c}{3}\right)^2 = 9$	Uses the point (3, 4) and solves simultaneously to obtain an equation in one variable	M1
	$16c^2 - 200c + 481 = 0$		
-	$(4c-37)(4c-13) = 0 \Longrightarrow c = \frac{37}{4}, \frac{13}{4}$	M1: Solves their quadratic to obtain 2 values for <i>c</i>	M1A1
		A1: Correct values	
-	$c = \frac{15}{4} \Longrightarrow m = \frac{1}{4}, \ c = \frac{57}{4} \Longrightarrow m = -\frac{7}{4}$	Finds at least one least one value for <i>m</i>	M1
	$c = \frac{13}{4} \Rightarrow m = \frac{1}{4}, \ c = \frac{37}{4} \Rightarrow m = -\frac{7}{4}$ $y = \frac{1}{4}x + \frac{13}{4}, \ y = -\frac{7}{4}x + \frac{37}{4}$	Correct equations	A1
F	Generally if candidates assume (3, 4) lies on the ellipse they score no marks		
			(5)
			Total 9

Question Number	Scheme	Notes	Marks
6	$x = 2\cos\theta - \cos 2\theta, \ y = 2\sin\theta - \sin 2\theta$		
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -2\sin\theta + 2\sin 2\theta, \ \frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\cos\theta - 2\cos 2\theta$	Correct derivatives	B1, B1
	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 + 4\sin^2 2\theta + 4\cos^2 2\theta + 6\cos^2 2\theta + 6\cos$	$s^2 \theta - 8\cos\theta\cos 2\theta + 4\cos^2 2\theta$	M1
	$=8-8(\cos 2\theta \cos \theta + \sin 2\theta \sin \theta)$		
	$=8-8\cos(2\theta-\theta)=8(1-\cos\theta)^*$	M1: Use of at least one correct trig identity A1*: Correct proof with no errors	M1A1*
		^	(5)
(b)	$S = 2\pi \int y \sqrt{\left(\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 - \right)^2}$	$+\left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2\right)\mathrm{d}\theta$	
	$S = 2\pi \int (2\sin\theta - \sin 2\theta) \sqrt{8(1 - \cos\theta)} \mathrm{d}\theta$	Substitutes $y = 2\sin\theta - \sin 2\theta$ and $8(1 - \cos\theta)$ into a correct formula	M1
	$= 2\pi \int 2\sin\theta (1 - \cos\theta) \sqrt{8(1 - \cos\theta)} \mathrm{d}\theta$		
	$= 8\pi\sqrt{2}\int\sin\theta \left(1-\cos\theta\right)^{\frac{3}{2}}\mathrm{d}\theta$	Processes to reach an integrand of the form $k \sin \theta (1 - \cos \theta)^{\frac{3}{2}}$	M1
	$=8\sqrt{2}\pi\left[\frac{2}{5}\left(1-\cos\theta\right)^{\frac{5}{2}}\right]_{0}^{\pi}$	Integrates to obtain an expression of the form $\alpha (1 - \cos \theta)^{\frac{5}{2}}$. Dependent on the previous method mark. (May be done by substitution)	dM1
	$= 8\pi\sqrt{2} \left(\frac{2}{5} \left(2\right)^{\frac{5}{2}} - 0\right)$	Use of limits 0 and π and subtracts Dependent on all previous method marks.	dddM1
	$=\frac{128}{5}\pi$	Allow equivalents e.g. 25.6π	A1
			(5)
			Total 10

			(6) Total 11
	$\alpha=2, \ -\frac{4}{3}$	сѕо	A1, A1
	$3\alpha - 1 = \pm 5$	Correct equations (must see ± for this mark but may still score one of the final A marks if ± is missing). May be implied and allow un-simplified.	A1
	$\left \frac{3\alpha - 1}{5\sqrt{5}}\right = \frac{1}{\sqrt{5}}$	Set their distance $=\frac{1}{\sqrt{5}}$. Dependent on both previous method marks	ddM1
	Note: $d = \left \frac{3\alpha - 10 - 4 \pm 13}{\sqrt{3^2 + 10^2 + 4^2}} \right \cos \theta$	ld score the first 2 method marks	
	$\therefore d = \left \frac{3\alpha - 1}{\sqrt{3^2 + 10^2 + 4^2}} \right \text{ or}$ $\therefore d = \left \frac{13}{\sqrt{3^2 + 10^2 + 4^2}} - \frac{14 - 3\alpha}{\sqrt{3^2 + 10^2 + 4^2}} \right $	Use of correct distance method. Dependent on the previous method mark. (Modulus not needed here)	dM1
	$\begin{pmatrix} -3\\10\\4 \end{pmatrix} \bullet \begin{pmatrix} \alpha\\1\\1 \end{pmatrix} = 14 - 3\alpha \text{ or}$ $\begin{pmatrix} \begin{pmatrix} \alpha\\1\\1\\-3 \end{pmatrix}\\10\\4 \end{pmatrix}$ $\begin{pmatrix} \begin{pmatrix} -3\\10\\4\\-4 \end{pmatrix} = 3\alpha - 1 \\ \text{their}$	npt scalar product between $\begin{bmatrix} 1\\1 \end{bmatrix}$ and their or $\begin{pmatrix} \alpha\\1\\1 \end{pmatrix}$ – (a point in the plane Π_1) and $\begin{pmatrix} -3\\10\\4 \end{pmatrix}$	M1
(b)		(α)	(5
-	3x - 10y - 4z = -13*	Correct equation	A1*
-	$\begin{pmatrix} -3\\10\\4 \end{pmatrix} \bullet \begin{pmatrix} 3\\3\\-2 \end{pmatrix} = -9 + 30 - 8 = 13$	Attempt scalar product with a point lying in the plane . Dependent on the previous method mark.	dM1
	$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & 4 \\ 2 & 1 & -1 \end{vmatrix} = \begin{pmatrix} -3 \\ 10 \\ 4 \end{pmatrix}$	unclear, at least 2 components should be correct.A1: Correct normal (any multiple)	M1A1
	$ \mathbf{i} \mathbf{j} \mathbf{k} (-3)$	M1: Attempt normal vector using 2 vectors lying in Π_1 . If the method is	
-	$2\mathbf{i} - \mathbf{j} + 4\mathbf{k}, 2\mathbf{i} + \mathbf{j} - \mathbf{k}$	2 correct vectors lying in Π_1	B1
7(a)	$(3, 3, -2), \frac{x}{2}$	$\frac{-1}{2} = \frac{y-2}{-1} = \frac{z+1}{4}$	
Question Number	Scheme	Notes	Marks

Question Number	Scheme		Notes	Marks
8 (a)	$\frac{\mathrm{d}x}{\mathrm{d}u} = \frac{3}{4}\cosh u$	Correct	expression	B1
	$\int \frac{x^2}{\sqrt{16x^2+9}} \mathrm{d}x = \int \frac{\frac{9}{16} \sinh^2 u}{\sqrt{16.\frac{9}{16} \sinh^2 u+9}} \cdot \frac{3}{4} \cosh u \mathrm{d}u$		M1A1	
-	M1: A complete substitution atte	empt. AI:	Correct expression	
	$=k\int \sinh^2 u\mathrm{d}u$			A1
	$\sinh^2 u = \frac{\cosh 2u - 1}{2}$		$f \sinh^2 u = \pm \frac{1}{2} \cosh 2u \pm \frac{1}{2}$ e implied by their integration	M1
	$=\frac{9}{128}\int (\cosh 2u - 1) du$			A1
				(6)
(b)	$x = 0 \Rightarrow u = 0, x = 1 \Rightarrow u = \operatorname{arsinh}\left(\frac{4}{3}\right)$	Correc	et limits	B1
	$\int (\cosh 2u - 1) du = \left[\frac{1}{2}\sinh 2u - u\right]$	-	pt integration of the form $2u + \beta u$	M1
	$\int_{0}^{1} \frac{64x^{2}}{\sqrt{16x^{2}+9}} \mathrm{d}x = \frac{9}{2} \left[\frac{1}{2} \sinh 2u - u \right]_{0}^{\operatorname{arsinh}\left(\frac{4}{3}\right)}$			
-	$=\frac{9}{2}\left\{\left(\frac{4}{3}\sqrt{1+\frac{16}{9}}\right)-\ln\left(\frac{4}{3}+\sqrt{1+\frac{16}{9}}\right)(-0)\right\}$	right w previ o	tute u limits and subtract the way round. Dependent on the bus M one omission of "-0")	dM1
	$=10, -\frac{9}{2}\ln 3$	cao		A1, A1
-				(5)
				Total 11
	Alternative – char	nges back	to x	
	$I = \frac{9}{2} \left[\sinh u \cosh u - u \right]_0^{\operatorname{arsinh}\left(\frac{4}{3}\right)}$			
	$I = \frac{9}{2} \left[\frac{4x}{3} \sqrt{\frac{16x^2}{9} + 1} - \operatorname{arsinh}\left(\frac{4x}{3}\right) \right]_0^1$		Use of $\frac{4x}{3}$	B1
	$=\frac{9}{2}\left\{\left(\frac{4}{3}\sqrt{1+\frac{16}{9}}\right)-\ln\left(\frac{4}{3}+\sqrt{1+\frac{16}{9}}\right)(-0)\right\}$		Substitute <i>x</i> limits and subtract the right way round. Dependent on the previous M (Condone omission of " -0 ")	dM1
	$=10, -\frac{9}{2}\ln 3$			A1, A1

Alternatives to 5(a)

	Tangent at $(5\cos\theta, 3\sin\theta)$ is	M1: Full attempt at a general tangent	N T 1 A 1
Wow 2	$y = -\frac{3\cos\theta}{5\sin\theta}x + \frac{3}{\sin\theta}$	A1: Correct tangent	M1A1
Way 2	$c^2 - 25m^2 = \frac{9}{\sin^2\theta} - 25\frac{9\cos^2\theta}{25\sin^2\theta}$	Substitutes their c and m into $c^2 - 25m^2$	M1
	$c^2 - 25m^2 = 9*$	Achieves printed answer with no errors	A1*

	$\frac{x^2}{25} + \frac{y^2}{9} = 1 \Longrightarrow \frac{2x}{25} + \frac{2y}{9}\frac{dy}{dx} = 0$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{9x}{25y} \Longrightarrow m = -\frac{9x}{25y}$			
	$y = -\frac{9x}{25m} = mx + c \Rightarrow x = -\frac{25mc}{9+25m^2} \text{ and } y = \frac{9c}{9+25m^2}$			
Way 3	M1: Differentiates implicitly, uses $\frac{dy}{dx} = m$ and $y = mx + c$ to obtain x and y in terms of			
	M and c A1: $x = -\frac{25mc}{9+25m^2}$ and $y = \frac{9c}{9+25m^2}$			
	$\frac{x^2}{25} + \frac{y^2}{9} = 1 \Rightarrow \frac{25m^2c^2}{\left(9 + 25m^2\right)^2} + \frac{9c^2}{\left(9 + 25m^2\right)^2} = 1$ Substitutes their x and y in terms of m and c into E			
	$25m^2c^2 + 9c^2 = (9+25m^2)^2 \Rightarrow c^2 - 25m^2 = 9*$ Achieves printed answer with no errors	A1*		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom